An Introductory Look into
Cryptography

By
Authors

George F

Vladimir S

Wesley W
Jason L

Introduction: What is Cryptography?

Cryptography is a field of math that is used to maintain a secure transfer of information
from one party to another even in the presence of a third party trying to get it.

Historically, cryptography has been used to plan and win wars. For example, in World
War II, the Enigma machine was used by the Axis to send battle plans from one
commander to the other and until the Allies were able to crack the code, the Axis was
able to launch devastating attacks without the Allies ever knowing about it. But when
the Allies did learn the code, the tide of war turned.. Although the Enigma machine was
very complex, an encryption using cryptography does not need to be. For example,
Julius Caesar used a substitution cipher to secretly send messages to his generals during
the Gallic Wars and it was one of the reasons why the Romans were so easily able to
defeat the army of Gaul.

Cryptography has been used for thousands of years, but that does not mean that there
are no modern applications of this field. In fact, most people use cryptography every
day. When you log into your email account or your Facebook account or do anything
that requires any amount of security, you are using cryptography. Indeed, most websites
that are popular to use such as Google and Yahoo use the “https://”” internet protocol.
This means that those websites are encrypted with to some level in order to make sure
that no one but you and the server you are sending the data to see anything that is even
moderately intelligible. These are just a few of the many ways that cryptography is used
in our lives.

In Section 1, we will begin to describe some of the basics of cryptography, including
some definitions and examples of simple ciphers such as the substitution cipher and
transposition cipher. Ultimately, it will establish the paper’s main goal: to create an
encryption method in which the sender encodes the message that only the receiver can
decipher. This is secure encryption. This section will also introduce the idea of the public
key cryptosystem, the kind of cryptosystem which we choose to study most in depth. In
Section 2, we will begin to introduce the mathematics behind cryptography by
discussing modular arithmetic and some of its operations, which is an important branch
of mathematics in the field of cryptography. Discussion of modular arithmetic will then
be applied in Section 3, which discusses some of many actual methods of encryption,
including the Caesar cipher, RSA Cryptosystem, and Diffie-Hellman-Merkle key
exchange, and reasons behind their securities. Though these are very different methods,
they all establish the same goal of sending a secure message. Each strives to make that
message as secure as possible.

After reading this paper, you will develop a further understanding into how we can use
mathematics to create data that can be securely sent from one party to another, which is
the essence of cryptography.

Section 1: The Basics

Before we can even start to analyze how we can create the secure systems used for
encryption, we need to first learn how each part of that secure system is defined. Before
we can send a message, we must first create one in everyday normal language. For
example, we could write down the phrase “The quick brown fox jumps over the lazy
dog” and this would be called our cleartext.

Definition 1.1- A message that has yet to be encoded and can be interpreted by
anyone who has access to it is called cleartext or plaintext.

Then, after deciding upon the cleartext, the sender encrypts it in some way, i.e. changes
the text in a way so that hopefully only the receiver can interpret it.

Definition 1.2- A message that has been encoded, or encrypted, in some way that is
meant only for the receiver to interpret is called ciphertext.

Example 1.1- “The quick brown fox jumps over the lazy dog” is an example of cleartext
that we may want to transform into ciphertext. Following an encoding where we encode
each letter to the next one in the alphabet we get, we may arrive at a ciphertext that
looks like the one below:

“Uif rvjdl cspxo gpy kvngt pwfs uif mbaz eph”

To an onlooker with no understanding of what has been done, it may seem that
gibberish was written. As we can see, had we been unaware of the what cleartext was,
we likely would not have been able to make the connection that between the cleartext
and the ciphertext had we tried to intercept and decode the message. Now, in order for
us to get from cleartext to ciphertext, we would need to encrypt it. In essence,
encryption is any method that changes the original text into a new message.

Definition 1.3- Encryption is any systematic method for transforming cleartext to
ciphertext.

Example 1.2- Let us take the previous cleartext, “The quick brown fox jumps over the
lazy dog” and encrypt it by shifting each letter to its next letter in the alphabet. So, ‘a’
now becomes ‘b’, the ‘b’ now becomes ‘c’, and so on until we get to ‘z’, which then
becomes ‘a’. Additionally, all spaces in between words will be removed. Below shows
the cleartext and the ciphertext of this example.

Cleartext: “The quick brown fox jumps over the lazy dog”
Ciphertext: “Uifrvjdlcspxogpykvnqtpwfsuifmbazeph”

Now assume that we have the ciphertext above, and we wished to discover the
meaning of the message. To do this, we would need to decode this message by a

method called decryption.

Definition 1.4- The method of transforming ciphertext back to the original cleartext is
called decryption.

Example 1.3- We can decrypt “Uifrvjdlcspxogpykvngtpwfsuifmbazeph” by reversing
the steps we took in Example 3 and we will get cleartext “The quick brown fox jumps
over the lazy dog.”

This prompts us to introduce some basic ciphers that directly use the idea of encryption
and decryption.

Definition 1.5- In a substitution cipher, letters or blocks of letters are replaced by
other letters or groups of letters.

Example 1.4- Suppose we translated the normal alphabet to the cipher alphabet below:

normal alphabet:abcd efgh 1 jklmnopqr s tuvwxyz
cipher alphabet: d e a cbzyxwvutsrqponmlkjihgf

Then, the cleartext “hello” would be encrypted to form the ciphertext “xbttq”.
To decrypt the message, the receiver would have to know the cipher alphabet,
or an adversary (an enemy who attempts to intercept a message) would have to
try to figure it out by trial and error.

Another very basic cipher is known as the transposition cipher.

Definition 1.6- In a transposition cipher, the letters themselves remained unchanged
but are rearranged in a predetermined scheme.

Example 1.5- One example of a transposition is to simply reverse the order of the
letters. Thus, the cleartext “Greetings my name is Julio” translates to ciphertext “oiluJ si
eman ym sgniteerG”. Of course, transposition ciphers may be more complex, and we
invite the readers to imagine more complex forms for themselves.

These two examples should provide a basic understanding of what encryption attempts
to accomplish. Naturally, then, a question should now arise: how can we make sure that
only those who we want to see the message will be able to decrypt it? Here is where
the concept of public and private key encryption becomes vital, and more definitions
are in store.

Definition 1.7- A key is a string of data that is used by an encryption or decryption
algorithm to encrypt or decrypt data, respectively. This is comparable to a key on a
map, which tells you how to read points on the map that you would not be able to read
otherwise.

In public key cryptography, a form of cryptography invented in 1976, a key can either
be labeled a public key and a private key. A public key is a key visible to anyone who
wants to use it to encrypt information. A private key is known only to certain people,
the decrypters, and this is the only key that can be used to decrypt the ciphertext.

Definition 1.8- A public key is a key that can be used by anyone to encrypt cleartext.

Definition 1.9- A private key is a key known by a select few to decrypt ciphertext
that was created by a certain public key.

With public key encryption, secrecy becomes especially important, and it is therefore
important to make sure that the private key is as difficult to compute possible. Below
we define a public key cryptosystem, i.e. a cryptosystem that uses a public key and a
private key, in which the private key is the inverse of the public key.

Definition 1.10- A public key cryptosystem is a cryptosystem with cleartext M
between encrypter A and decrypter B that follows these steps:

1. A uses B’s public key Py to create the ciphertext C = Py(M).

2. Asends C to B.

3. B applies his secret key S to C to obtain M, so that Sg(C) = M.

We see, then, that S;(Pz(M)) = M, indicating that S; and Py, are inverses of each other.
An adversary will likely know B’s public key and may well intercept the ciphertext C,
but the adversary will not obtain the message M unless he knows B’s secret key. His
way to find the secret key, then, is to find the inverse of the public key. Therefore, the
challenge for A and B in a public key cryptosystem is to design a public key that is as
difficult to invert as possible, though feasible to compute if given a method of inversion.

Therefore, public key cryptosystems are based on this idea of creating functions that are
easy to compute on inputs but hard to invert. These functions are referred to as

one-way functions, with a trap-door function being the secret inverse to a one-way
function. We do not provide technical definitions of these as they are complex and stray
from our purpose, and are mentioned only for later reference. We will see that the
challenge of creating these functions applies in our later discussion of the RS4
Cryptosystem, which is one of the most famous public key cryptosystem.

In order for us to be able to prevent adversaries from being able to read our message,
we need to make sure that our method of encoding and decoding, or in other words our
cryptosystem, as secure as possible. Though different mathematical models have
defined what a secure cryptosystem is, the actual definition of security is still somewhat
a matter of opinion. Ultimately, though, the goals of security are:

1. To create extreme difficulty in being able to determine the cleartext from

an intercepted ciphertext
2. To create a system of encryption that is difficult to detect, even with

multiple samples of ciphertext.

The branch of mathematics called modular arithmetic is especially important in
mathematically encrypting messages, so we take a digression in Section 2 to establish a
foundation for modular arithmetic and some of its operations necessary for the RSA and
Diffie-Hellman Cryptosystems. On top of this, we will describe other mathematical
operations that are key (no pun intended) to constructing the cryptosystems.

Section 2: Modular Arithmetic and Other Related
Mathematics

Now that we have the essential definitions of cryptography under our belt, we will begin
to discuss some of the encryption methods used. One of the most classic codes used in
encryption is known as the Caesar Cipher, in which the letters of the alphabet are all
shifted by a predetermined amount in the encryption. For example, in a Caesar Cipher,
the encoder could shift all letters over 5 letters further down the alphabet, so that ‘A’
becomes ‘F’, ‘B’ becomes ‘G’, etc. It is relatively simple to describe such encryption
with modular arithmetic. Modular arithmetic is useful in this example of encryption but
also has great importance in other methods of cryptography, and so we take a

digression into modular arithmetic in itself before applying it to methods of

cryptography.

Definition 2.1- The congruence relation x = m mod n means that x - m = nk, for

some integer &, and is read “x is congruent to m modulo #n.” Since k can be any integer,
x can be an infinite number of values for constant integers m and ». This statement x
and m each have the same remainder when divided by #.

Example 2.1- 1=13 =25mod 12, because 1, 13, and 25 all have the same remainder
when divided by 12.

Notice we used the congruence sign, “=", instead of the equal sign, “=", when
evaluating 25 mod 12. This is to distinguish between modular arithmetic and basic
arithmetic, so that we read “25 is congruent to 1 modulo 12.” For the purposes of
cryptography, it is most convenient to deal with the class of numbers {0, 1, ..., m-1}
when using modular operations, and so we write the following definition below.

Definition 2.2- The equation » = m mod n gives the remainder » when dividing the
integer m by the integer n. Specifically, m mod 7 is the smallest nonnegative integer
such that

m=nq +r,
for an integer ¢ such that ng < m and n(g+1) > m.

Example 2.2- 25 mod 12 = 1.

Another helpful way to describe modular arithmetic is “wrap-around arithmetic.” One
common example of this mode of thought is in adding time, which uses mod 12
arithmetic. For example, if it is 11:00 and we want to know the time in 3 hours, it will be
(11+3) mod 12 = 2. Therefore, the time becomes 2:00, and we reached this value by
“wrapping around” 12 o’clock back to 1:00, rather than going on to 13:00.

In the Caesar cipher specifically (not a public key cryptosystem, but interesting to note
nonetheless), a computer could implement mod 26 arithmetic. If each letter in the
alphabet were labeled 0 to 25, and we used a shift of two letters in our encryption, the
computer would use the code x = (n + 2) mod 26, where x represents the ciphered
letter, and # is the original letter. That way, for letters Y and Z (labeled 24 and 25), the
encryption would return 0 and 1 for x, which translates to the letters A and B; the shift
would “wrap around” the alphabet, and return back to the beginning. In general terms, a
shift of k letters in a Caesar cipher could be described mathematically by the function x
= (n + k) mod 26.

Of course, this kind of encoding would be incredibly easy for an adversary to crack. All
that he would have to do to obtain the cleartext is simply test each of the possible 26
shifts that are possible by translating each shift into English. Surely, one of these tests
would reveal the desired message, and therefore this method of encryption is a relatively
unsafe one. Still, we will see that modular arithmetic is a necessity for many important
methods of cryptography.

In our earlier example of the Caesar cipher, the inversion was plainly obvious: to simply
shift the alphabet backwards £ letters if the original action was to shift it forward k&
letters. Clearly, a more complex combination of operations in modular arithmetic is
needed to create a secure encryption, and so we now discuss operations in modular
arithmetic.

Arithmetic mod »n

We will now begin to introduce some of the basic operations of arithmetic in mod #.
We have already seen that addition is relatively easy operation to invert. Here, we will
explore multiplication, exponentiation, and the multiplicative inverse, as these specific
operations become very important in our later discussion of cryptosystems.

Before discussing all of these operations, we must establish the following lemma, which
proves an idea stated earlier.

Lemma 2.1: a mod n = (a + kn) mod n, for any positive integers a, n, and k.
Proof: By Definition 2.2, we have

a = gn + r, where r = a mod n, for some g.
Adding kn to both sides gives

a+kn=(qg+kn +r.
By Definition 2.2, we have r = (a + kn) mod n, and thus the lemma is proved.
Multiplication

Particularly, we want to prove the following lemma, as this result will be used in
exponentiation.

Lemma 2.2: (a - b) mod n=[a- (bmod n)] mod n

Proof: We can write
a = (amod n) + cn and b = (b mod n) + dn, for some integers ¢ and d.
Then,
ab = ((a mod n) + cn)((b mod n) + dn)
ab = (a mod n)(b mod n) + dn(a mod n) + cn(b mod n) + cdn®.

After taking the “mod” of each side, we can simplify this to

(a*b) mod n = [(a mod n)(b mod n)] mod n, by Lemma 2.1.
Using a mod n = a - cn, we have

(a - by mod n = [(a - cn)(b mod n)] mod n
(a - b) mod n = (a(b mod n) - c¢(b mod n)-n) mod n
(a - b)mod n=[a - (b mod n)] mod n, again by Lemma 2.1.

Thus, the lemma is proved. This identity of multiplication becomes very important in our
now imminent discussion of exponentiation, which is likewise very important in the RSA
Cryptosystem.

Exponentiation

Suppose we wanted to evaluate the following modular exponent:

a = 16 mod 782.
Based on our current knowledge of modular arithmetic, we could calculate 16> directly,
and then find its remainder when divided by 782. Though a modern, high-powered
computer could make these calculations, larger values would not be within the
computer’s memory, or at the very least make calculations take an unreasonable
amount of time to perform. Therefore, we need a systematic way to deal with modular
exponentiation.

To find the value of » = m* mod n, we can use the following cycle of steps.
1. Begin with » = 1, and £’ = 0, where £’ is an arbitrary integer (obviously related
to k.)
2. Increase k' by 1.
3. Resetr = (r -m) mod n.
4. Stop if k* = k, at which point » = m* mod n. Otherwise, go back through the
cycle starting at step 2.

Proof: We claim that at each pass through step 3, » = m* mod n. This also proves that
the end of the method will supply us with our desired value.

At our base case of ¥ = 1 and k’ =1, step 3 gives us anew » = (1 -m)mod n = m'
mod n. Thus, the base case proves true.

Now, assume true for £’. Then, our next path through step three will give new value 7,
r = ((m" mod n) - m)mod n.
= m** mod n, by Lemma 2.2

Therefore, by induction, we know that once &’ = &, we will end up with the desired
result for 7, that being m* mod n.

This method of calculating modular exponents is far more memory efficient than the
direct method, as it will almost never involve calculations of numbers of too long a bit
length for the computer to calculate. In fact, The largest numbers that could be
produced are in the product 7m, yet we know that » < n and that m is just the base of
the exponent. Thus, as long as m and n are of reasonable bit length (in any typical case,
they are), this method of performing exponentiation is possible for a computer to
compute (or even a person who wanted to have some fun!).

Now, we discuss the modular multiplicative inverse, an intermediate operation of the
RSA Cryptosystem.

Definition 2.3: The modular multiplicative inverse of an integer m modulo 7 is an
integer x such that

mx = 1 mod n.
For the modular multiplicative inverse to exist, we must have gcd(m, n) = 1.

Example 2.3- The modular multiplicative inverse of 7 modulo 4 could be any numbers
of the class {...,-1, 3, 7, 11, ...}. For example, if we choose x = 3, then the statement
7x = 1 mod 4 is true. In general, the modular multiplicative inverse will refer to the
smallest positive integer x that satisfies this congruence.

By our definition of modular congruence, we know, using the variables from the the
definition above,
mx - 1 = ng, for some integer q.
Equivalently,
mx - nqg = 1.

The equation above can be solved for x and ¢ by a method known as the extended
Euclidean Algorithm, which is an algorithm, given the equation

ax + by = ged(a, b),
and given integers a and b, solves for integers x, y, and gcd(a, b).

Our definition should inspire one question then: why must gcd(m, n) = 1? If we go back
to our equation

mx - nq =1,
note that gcd(m, n) must divide each term on the left side, and thus it must divide 1 as
well. Therefore, it must be true that gcd(m, n) = 1, and therefore the modular
multiplicative inverse only exists if this equality is confirmed. Then, with gcd(m, n) =1,
the extended Euclidean Algorithm can be applied directly to solve for x, the inverse.

This relates closely to Euler’s Totient function, which is also vital to the RSA
Cryptosystem, and is defined below.

Definition 2.4- Euler’s Totient function, ¢(n), gives the number of positive integers k
less than or equal to a positive integer n such that ged(n, k) = 1.

This leads directly into the following lemma:
Lemma 2.3- If an integer 7 is a positive, prime integer, then ¢(n) =n— 1.

Proof: If n is a prime number, then its only divisors are 1 and n, and thus every positive
integer k less than n satisfies gcd(n, k) = 1, and there are (n - 1) such integers.

It follows from this lemma that, if p and ¢ are distinct prime integers, then
¢(n) = (p—1)(g—1) , where n = pq.

The fact above is used both in the process of encryption in the RSA Cryptosystem and
in the proof of its correctness, which is performed using Euler’s Theorem. This
theorem is written below.

Euler’s Theorem - If an integer a and n are coprime positive integers, then
a" = a modn,

where k = o@(n).

We leave out a proof of this theorem, as it is very complicated and digresses from the
purpose of establishing tools for constructing cryptosystems, which we begin to do now.
In the following section, we will use the tools established in this section to construct
relatively secure cryptosystems like the RSA Cryptosystem and the Diffie-Helman
Exchange.

Section 3: Functions and Public Key Cryptosystems

In this section, we will begin to discuss some more complicated cryptosystems,
particularly the RSA Cryptosystem and the Diffie-Hellman-Merkle Exchange.

Now, we will proceed to describe the process of constructing an RSA cryptosystem,
and prove its correctness afterwards.

RSA Cryptosystem

There are three stops involved in creating the cryptosystem, those being determining the
keys, encrypting, and decrypting.

Determining a Public and Private Key:
1. Find the product n of two large, prime numbers p and gq.
2. Find the totient a = ¢(n) =(p - 1)(g - 1).
3. Pick a number e that is relatively prime to a.
4. Find d, where d' = e mod a, i.e. where d is the multiplicative inverse of e
modulo a. Note that this calculation can be carried out since e is relatively prime to a.
5. The public key will be (n,e) while the private key will be (n,d).

Encryption:
1. The sender will change his desired message into numbers, labeled m, through a
pre-arranged method.
2. These numbers will be changed into ciphertext ¢ through the equation
¢ = m® mod n, which can be calculated by our memory-efficient method of
modular exponentiation discussed in Section 2.

Decryption:
1. The receiver will decrypt through the equation m = ¢ “ mod n.

Our one-way function here is ¢ = m* mod 7 and the trapdoor is m = ¢ mod n.

Proof of Correctness: We are going to prove that m = ¢? mod n, where ¢ = m°mod n,
assuming the variables given in the steps above, which is equivalent to proving that m =
(m°)? mod n. Given the equality a = ¢@(n), we know that, since we made d the
multiplicative inverse of e modulo a, we have

ed = 1 modaq,

and therefore,
ed - 1 = ka, for some integer k.
Thus, we can substitute into (m°)? mod 7 so that now we have
m" ! mod n
= m(m“)* mod n.
Using our knowledge of modular multiplication, we know this to be equivalent to
[m - ((m*)* mod n)] mod n.

Now, we wish to evaluate (m“)* mod n, and substitute it into the equation above. By
Euler’s Theorem, since a = ¢(n), we know that m* = 1 mod n, which therefore
means that (m“)* = 1 mod n, as well. Thus, we are left with the congruence

[m - ((m“)* mod n)] = m mod n.

This confirms that m = (m°)? mod n, and therefore that the methods of encryption and
decryption successfully transfer the message m between the sender and receiver.

Now that we have confirmed that the RSA Cryptosystem can successfully transfer a
message, we will now provide an example of the cryptosystem in practice. Note that the
example below chooses much lower numbers for p, ¢, e, and d than would be ordinary.
The numbers below were used for the sake of simplicity and understanding.

Example 3.1- Suppose Jack wanted to send the message, “13,” to Jill. Beforehand,
Jack and Jill agreed that p = 5 and ¢ = 7 would be the two primes they utilized.

Finding the keys:

1. The product n = pg = 35.

2. The totientis @(n) = (5—1)(7—1) =24. .

3. Jack’s favorite number was 7, so this was decided to be e.

4. Here, we want to find d where 7d = 1 mod 24. In general, d can be easily
solved by a computer with the previously mentioned algorithm Euclidean’s Algorithm.
For this case, the easiest method is trial-and-error by using the formula 7d - 1 = 24k,
where £ is the smallest positive integer satisfying this equation.

So, d =24 = 245+ Land we’re looking for the first number where d is an integer.
This givesus k=2 and d=7.

Encrypting:

The message is already in number form, so encrypting it is the only thing left for
Jack to do:

c¢=13"mod 35 =27

Decrypting:
Jill has received the message safely and deciphers it:
m = 27" mod 35 = 13, getting the desired message m = 13.

This is an extremely secure cryptosystem because it requires the factoring of two
extremely large prime numbers (prime numbers with more than 100,000 digits), and
with the current state of technology and mathematics, this is quite difficult and takes
much more time than what is computationally reasonable for someone who wants to
access the information.

Diffie-Hellman-Merkle Key Exchange

The Diffie-Hellman-Merkle key exchange, also known as the exponential key exchange
is the particular way of sharing cryptographic keys. This method allows two parties to
create a default code through a channel without the need of understanding the each
others’ codes through the following method.

Assume two parties, A and B are sending each other a message over an open channel.
A and B have decided to use a common prime p, and a , where r is a primitive root
mod p. Additionally A has chosen secret integer @ and B has chosen secret integer b.
Then we have that:

A sends to B the following message: C = r* mod p
B sends to A the following message: D = * mod p

Now, in order to have a common secret they will do a similar operation, but with C and
D. Thus:

A calculates: £ = C“ mod p
B calculates: D’ mod p, which nicely also equals E

The reason both A and B reach the common secret E is because they both calculate £
= 7*® mod p, and thus through the previous key exchange, both parties A and B now
share a common secret E. This is remarkable, yet simple. With A and B keeping a and
b secret, respectively, they are each sent enough information to calculate the secret £ =
*mod p, yet an adversary, who only has knowledge of 7, p, C = ¥*mod p, and D =

7 mod p, is unable to be able to find E.

Summary

In this brief introduction to cryptography, the background of cryptography, modular
arithmetic, and methods to exchange and encrypt messages were discussed.

Cryptography has been used for centuries was a vital part of many wars and feuds. The
Nazi Enigma machine was one such example. The main parts of cryptography consist of
establishing a known encryption method, encoding the message, sending it, and
deciphering the message. The encryption should be secure, meaning the ciphertext is
hard to decipher. These means many of the most basic encryptions are insecure, such as
the Caesar cipher. One-way functions are examples of secure encryptions.

One-way functions are easy to compute but hard to invert. Examples include factoring a
product of two primes. A special type of one-way function is the trapdoor function,
where the receiver has a trapdoor which can decipher encrypted messages. The RSA
cryptosystem is a trapdoor function. It involves using special encryption and decryption
“keys” to modify the problem of factoring the product of prime numbers.

The Diffie-Helman-Merkle key exchange is a method of exchanging messages and
sharing encryption keys. It involves sending random secrets between the two encoders
involved. Then, the two will determine the key through a set way.

Bibliography

For discussion of operations in modular arithmetic.
http://www.math.dartmouth.edu/archive/m19w03/public_html/Section2-1

Euler’s Theorem, Totient Function, RSA Cryptosystem.
http://www.unc.edu/math/Faculty/petersen/Coding/cr2.pdf

Modular Multiplicative Inverse
http://www.math.cornell.edu/~morris/135/mod.pdf

Diffie-Hellman Exchange
http://math.ucsd.edu/~wgarner/research/pdf/diffie-hellman key_ exchange.pdf

Basics of Cryptography
http://fisher.osu.edu/~muhanna.1/pdf/crypto.pdf

http://www.google.com/url?q=http%3A%2F%2Fwww.math.dartmouth.edu%2Farchive%2Fm19w03%2Fpublic_html%2FSection2-1&sa=D&sntz=1&usg=AFQjCNGs9kgvBcF4K19UPgYdS0NzE9g7fw
http://www.google.com/url?q=http%3A%2F%2Fwww.unc.edu%2Fmath%2FFaculty%2Fpetersen%2FCoding%2Fcr2.pdf&sa=D&sntz=1&usg=AFQjCNEfqoqlXkjDwhqCDgG4nCnejhT5lw
http://www.google.com/url?q=http%3A%2F%2Fwww.math.cornell.edu%2F~morris%2F135%2Fmod.pdf&sa=D&sntz=1&usg=AFQjCNFs-6Wb9gVHwepaikOQQ2WSAEERMA
http://www.google.com/url?q=http%3A%2F%2Fmath.ucsd.edu%2F~wgarner%2Fresearch%2Fpdf%2Fdiffie-hellman_key_exchange.pdf&sa=D&sntz=1&usg=AFQjCNErZ9REB0t5D4SfGF-P0zi9VfG5cQ
http://www.google.com/url?q=http%3A%2F%2Ffisher.osu.edu%2F~muhanna.1%2Fpdf%2Fcrypto.pdf&sa=D&sntz=1&usg=AFQjCNHn-FEg5vOIZek_Qv8Vax6cDAD9Qg

